Home Supplements Sex differences and considerations for female specific nutritional strategies: a narrative review

Sex differences and considerations for female specific nutritional strategies: a narrative review

  • 1.

    UN. Women, gender equality and sport. Women 2000 Beyond. 2007:1–40.

  • 2.

    Fink JS. Female athletes, women’s sport, and the sport media commercial complex: Have we really “come a long way, baby”? Sport Manag. Rev. 2015:331–42.

  • 3.

    McNulty KL, Elliott-Sale KJ, Dolan E, Swinton PA, Ansdell P, Goodall S, et al. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sport Med [Internet]. Springer International Publishing; 2020; Available from: https://doi.org/10.1007/s40279-020-01319E-3.

  • 4.

    Benton MJ, Hutchins AM, Dawes JJ. Effect of menstrual cycle on resting metabolism: A systematic review and metaanalysis. PLoS One. Public Library of Science; 2020 [cited 2020 4];15. Available from: https://pubmed.ncbi.nlm.nih.gov/32658929/

  • 5.

    Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio JB, et al. A guide to applying the sex-gender perspective to nutritional genomics [Internet]. Nutrients. MDPI AG; 2019 [cited 2020 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/30577445/

  • 6.

    Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol. 2002;282:435–47.


    Google Scholar
     

  • 7.

    Campbell SE, Angus DJ, Febbraio MA. Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am J Physiol. 2001;281:817–25.


    Google Scholar
     

  • 8.

    Gorczyca AM, Sjaarda LA, Mitchell EM, Perkins NJ, Schliep KC, Wactawski-Wende J, et al. Changes in macronutrient, micronutrient, and food group intakes throughout the menstrual cycle in healthy, premenopausal women. Eur J Nutr. 2016;55:1181–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26043860 [cited 2020 15 Apr].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Walker JL, Heigenhauser GJF, Hultman E, Spriet LL. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol. 2000;88(6):2151–8. https://doi.org/10.1152/jappl.2000.88.6.2151.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, et al. A Reduced Ratio of Dietary Carbohydrate to Protein Improves Body Composition and Blood Lipid Profiles during Weight Loss in Adult Women. J Nutr. 2003:133, 411–7 Available from: https://academic.oup.com/jn/article-abstract/133/2/411/4687883 [cited 2020 13 Apr].

  • 11.

    Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: Research & recommendKerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., … Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: Research & recommendat. J Int Soc Sports Nutr. 2018;15:1–57.

    Article 
    CAS 

    Google Scholar
     

  • 12.

    Jonason PK. An evolutionary psychology perspective on sex differences in exercise behaviors and motivations. J Soc Psychol. 2007;147:5–14 Available from: https://www.tandfonline.com/doi/abs/10.3200/SOCP.147.1.5-14 [cited 2020 25 Sep].

    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Silberstein LR, Striegel-Moore RH, Timko C, Rodin J. Behavioral and psychological implications of body dissatisfaction: Do men and women differ? Sex Roles; 1988; 19: 219–232. Available from: https://link.springer.com/article/10.1007/BF00290156 [cited 2020 25 Sep]

  • 14.

    Shriver LH, Betts NM, Wollenberg G. Dietary intakes and eating habits of college athletes: are female college athletes following the current sports nutrition standards? J am Coll heal. 2013;

  • 15.

    Hoogenboom BJ, Morris J, Morris C, Schaefer K. Nutritional knowledge and eating behaviors of female, collegiate swimmers. N Am J Sports Phys Ther. 2009.

  • 16.

    Manore MM. Dietary recommendations and athletic menstrual dysfunction. Sport Med. 2002;32(14):887–901. https://doi.org/10.2165/00007256-200232140-00002.

    Article 

    Google Scholar
     

  • 17.

    Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. The female athlete triad. Med Sci Sports Exerc. 2007;

  • 18.

    Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol. 2002;282(2):E435–47. https://doi.org/10.1152/ajpendo.00266.2001.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Pivarnik JM, Marichal CJ, Spillman T, Morrow JR. Menstrual cycle phase affects temperature regulation during endurance exercise. J Appl Physiol. 1992;72(2):543–8. https://doi.org/10.1152/jappl.1992.72.2.543.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Hunter SK. Sex differences in fatigability of dynamic contractions. Exp Physiol. 2016;101:250–5 Available from: https://www.ncbi.nlm.nih.gov/pubmed/26440505 [cited 2020 8 Apr].

    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Hackney AC, Kallman AL, Aǧgön E. Female sex hormones and the recovery from exercise: menstrual cycle phase affects responses. Biomed Hum Kinet. 2019;11(1):87–9. https://doi.org/10.2478/bhk-2019-0011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Bredella MA. Sex differences in body composition. Adv Exp Med Biol. 2017:9–27 Available from: https://www.ncbi.nlm.nih.gov/pubmed/29224088 [cited 2020 13 Apr].

  • 23.

    Aucouturier J, Baker JS, Duché P. Fat and carbohydrate metabolism during submaximal exercise in children. Sport Med. 2008:213–38.

  • 24.

    Isacco L, Duch P, Boisseau N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sport Med. 2012;42(4):327–42. https://doi.org/10.2165/11598900-000000000-00000.

    Article 

    Google Scholar
     

  • 25.

    Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40:207–27 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20199120 [cited 2020 20 Mar].

    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Lebrun CM. The effect of the phase of the menstrual cycle and the birth control pill on athletic performance. Clin Sports Med. 1994:419–41.

  • 27.

    Reilly T. The Menstrual Cycle and Human Performance: An Overview. https://doi.org/101076/0929-1016(200002)31:1;1-0;FT029. Taylor & Francis Group ; 2010;

  • 28.

    Van Pelt RE, Gavin KM, Kohrt WM. Regulation of Body Composition and Bioenergetics by Estrogens. Endocrinol Metab Clin North Am. 2015:663–76.

  • 29.

    Davidsen L, Vistisen B, Astrup A, et al. Int J Obes. 2007:1777–85.

  • 30.

    Bisdee JT, James WPT, Shaw MA. Changes in energy expenditure during the menstrual cycle. Br J Nutr. 1989;61:187–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Kriengsinyos W, Wykes LJ, Goonewardene LA, Ball RO, Pencharz PB. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol Endocrinol Metab. 2004;287:E489–96 Available from: https://www.ncbi.nlm.nih.gov/pubmed/15308475 [cited 2020 20 Mar].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Draper CF, Duisters K, Weger B, Chakrabarti A, Harms AC, Brennan L, et al. Menstrual cycle rhythmicity: metabolic patterns in healthy women. Sci Rep. 2018;8:14568 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30275458 [cited 2020 20 Mar].

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Tarnopolsky MA. Gender differences in substrate metabolism during endurance exercise. Can J Appl Physiol. 2000;25:312–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001:499–502.

  • 35.

    Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY. Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport? [Internet]. Sport. Med. Springer Science and Business Media Deutschland GmbH; 2021 [cited 2021 Feb 5]. Available from: https://pubmed.ncbi.nlm.nih.gov/33502701/

  • 36.

    Lavoie JM, Dionne N, Helie R, Brisson GR. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. J Appl Physiol. 1987;62:1084–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/3571066 [cited 2020 20 Mar].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Nicklas BJ, Hackney AC, Sharp RL. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med. 1989;10(04):264–9. https://doi.org/10.1055/s-2007-1024913.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    JEH J, Jones NL, Toews CJ, Sutton JR. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:1493–9 Available from: https://journals.physiology.org/doi/abs/10.1152/jappl.1981.51.6.1493 [cited 2020 5 Oct].


    Google Scholar
     

  • 39.

    Smekal G, Von Duvillard SP, Frigo P, Tegelhofer T, Pokan R, Hofmann P, et al. Menstrual cycle: No effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc; 2007; 39: 1098–1106. Available from: https://pubmed.ncbi.nlm.nih.gov/17596777/ [cited 2020 5 Oct]

  • 40.

    Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Casazza GA, Suh SH, Miller BF, Navazio FM, Brooks GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698–702. https://doi.org/10.1152/japplphysiol.00622.2002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Romero-Moraleda B, Del Coso J, Gutiérrez-Hellín J, Ruiz-Moreno C, Grgic J, Lara B. The influence of the menstrual cycle on muscle strength and power performance. J Hum Kinet Sciendo. 2019;68(1):123–33. https://doi.org/10.2478/hukin-2019-0061.

    Article 

    Google Scholar
     

  • 43.

    Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62. https://doi.org/10.1007/BF00235103.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Yoon T, Doyel R, Widule C, Hunter SK. Sex differences with aging in the fatigability of dynamic contractions. Exp Gerontol; 2015; 70:1–10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26159162 [cited 2020 13 Apr]

  • 45.

    Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol; 2020. p. 2007–2021. Available from: https://pubmed.ncbi.nlm.nih.gov/33002256/ [cited 2021 5 Feb]

  • 46.

    Bar-Or O. Effects of age and gender on sweating pattern during exercise. Int J Sports Med. 1998; 19 Suppl 2:S106–S107. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9694411 [cited 2020 8 Apr]

  • 47.

    Grucza R. Efficiency of thermoregulatory system in man under endogenous and exogenous heat loads. Acta Phys Pol A. 1990;41:123–45.

    CAS 

    Google Scholar
     

  • 48.

    Kaciuba-Uscilko H, Grucza R. Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care. 2001:533–6.

  • 49.

    Grucza R, Pekkarinen H, Titov EK, Kononoff A, Hänninen O. Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. Eur J Appl Physiol Occup Physiol. 1993;67(3):279–85. https://doi.org/10.1007/BF00864229.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Inoue Y, Tanaka Y, Omori K, Kuwahara T, Ogura Y, Ueda H. Sex- and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure. Eur J Appl Physiol. 2005; 94: 323–332. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15729550 [cited 2020 8 Apr]

  • 51.

    Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab; 2007; 92: 865–872. Available from: https://pubmed.ncbi.nlm.nih.gov/17200169/ [cited 2020 16 Nov]

  • 52.

    Sartorio A, Maffiuletti NA, Agosti F, Lafortuna CL. Gender-related changes in body composition, muscle strength and power output after a short-term multidisciplinary weight loss intervention in morbid obesity. J Endocrinol Invest; 2005; 28: 494–501. Available from: https://pubmed.ncbi.nlm.nih.gov/16117189/ [cited 2020 16 Nov]

  • 53.

    Pearson AG, Alexander L, Witard OC, Coughlin TE, Tipton KD, Walshe IH. A hypoenergetic diet with decreased protein intake does not reduce lean body mass in trained females. Eur J Appl Physiol; 2020; 1–11. Available from: https://doi.org/10.1007/s00421-020-04555-7, 121, 3, 771, 781 [cited 2020 16 Dec]

  • 54.

    Valentine RJ, Misic MM, Rosengren KS, Woods JA, Evans EM. Sex impacts the relation between body composition and physical function in older adults. Menopause; 2009; 16: 518–523. Available from: /pmc/articles/PMC2844341/?report=abstract [cited 2020 16 Nov]

  • 55.

    Blunt BA, Klauber MR, Barrett-Connor EL, Edelstein SL. Sex differences in bone mineral density in 1653 men and women in the sixth through tenth decades of life: the Rancho Bernardo Study. J Bone Miner Res. 1994; 9: 1333–1338. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7817816 [cited 2020 Apr 13]

  • 56.

    Lee N, Wingo P, Gwin M, Rubin G, Kendrick J, Webster L, et al. The Reduction in Risk of Ovarian Cancer Associated with Oral-Contraceptive Use. N Engl J Med; 1987; 316: 650–655. Available from: https://www.nejm.org/doi/full/10.1056/NEJM198703123161102 [cited 2020 Dec 3]

  • 57.

    Frye CA. An overview of oral contraceptives: Mechanism of action and clinical use [Internet]. Neurology. Lippincott Williams and Wilkins; 2006. Available from: https://pubmed.ncbi.nlm.nih.gov/16567739/ [cited 2020 3 Dec]

  • 58.

    Daniels K, Abma J. Current contracpetive status among women aged 15–49 [Internet]. NCHS Data Brief, no 327. 2018 [cited 2020 Dec 3]. Available from: https://www.cdc.gov/nchs/products/databriefs/db327.htm

  • 59.

    Hackney AC. Sex hormones, exercise and women. 2017, DOI: https://doi.org/10.1007/978-3-319-44558-8.

  • 60.

    Van Vliet HA, Grimes DA, Helmerhorst FM, Schulz KF, Lopez LM. Biphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev [Internet]. Wiley; 2006 [cited 2020 Nov 20];2006. Available from: /pmc/articles/PMC6492366/?report=abstract.

  • 61.

    Van Vliet HA, Grimes DA, Lopez LM, Schulz KF, Helmerhorst FM. Triphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev [Internet]. Wiley; 2011 [cited 2020 Dec 3];2011. Available from: /pmc/articles/PMC7154342/?report=abstract.

  • 62.

    Godsland IF, Crook D, Simpson R, Proudler T, Felton C, Lees B, et al. The Effects of Different Formulations of Oral Contraceptive Agents on Lipid and Carbohydrate Metabolism. N Engl J Med; 1990; 323: 1375–1381. Available from: https://www.nejm.org/doi/full/10.1056/nejm199011153232003 [cited 2020 Dec 3]

  • 63.

    van der Vange N, Kloosterboer HJ, Haspels AA. Effect of seven low-dose combined oral contraceptive preparations on carbohyrate metabolism. Am J Obstet Gynecol. 1987;156(4):918–22. https://doi.org/10.1016/0002-9378(87)90355-3.

    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Suh SH, Casazza GA, Horning MA, Miller BF, Brooks GA. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol; 2003; 94: 285–294. Available from: https://pubmed.ncbi.nlm.nih.gov/12391078/ [cited 2020 3 Dec]

  • 65.

    Silva-Bermudez LS, Toloza FJK, Perez-Matos MC, de Souza RJ, Banfield L, Vargas-Villanueva A, et al. Effects of oral contraceptives on metabolic parameters in adult premenopausal women: A meta-analysis. Endocr Connect. 2020;9:978–98 Available from: https://pubmed.ncbi.nlm.nih.gov/33048062/ [cited 2020 3 Dec].

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Casazza GA, Jacobs KA, Suh SH, Miller BF, Horning MA, Brooks GA. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol. 2004;97:302–9 Available from: https://pubmed.ncbi.nlm.nih.gov/14990561/ [cited 2020 3 Dec].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Larsen B, Cox A, Colbey C, Drew M, McGuire H, Fazekas de St Groth B, et al. Inflammation and Oral Contraceptive Use in Female Athletes Before the Rio Olympic Games. Front Physiol. 2020;11:497 Available from: https://www.frontiersin.org/article/10.3389/fphys.2020.00497/full [cited 2020 3 Dec].

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Cauci S, Francescato MP, Curcio F. Combined Oral Contraceptives Increase High-Sensitivity C-Reactive Protein but Not Haptoglobin in Female Athletes. Sport Med. 2017;47:175–85 Available from: https://pubmed.ncbi.nlm.nih.gov/27084393/ [cited 2020 3 Dec].

    Article 

    Google Scholar
     

  • 69.

    Rechichi C, Dawson B, Goodman C. Oral contraceptive phase has no effect on endurance test. Int J Sports Med. 2008;29:277–81 Available from: https://pubmed.ncbi.nlm.nih.gov/17990209/ [cited 2020 3 Dec].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Rechichi C, Dawson B. Oral contraceptive cycle phase does not affect 200-m swim time trial performance. J Strength Cond Res; 2012 ; 26: 961–967. Available from: https://pubmed.ncbi.nlm.nih.gov/22446669/ [cited 2020 3 Dec]

  • 71.

    Lebrun CM, Petit MA, McKenzie DC, Taunton JE, Prior JC. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: A randomised controlled trial. Br J Sports Med; 2003; 37: 315–320. Available from: https://pubmed.ncbi.nlm.nih.gov/12893716/ [cited 2020 3 Dec]

  • 72.

    Dalgaard LB, Dalgas U, Andersen JL, Rossen NB, Møller AB, Stødkilde-Jørgensen H, et al. Influence of Oral Contraceptive Use on Adaptations to Resistance Training. Front Physiol; 2019; 10: 824. Available from: https://www.frontiersin.org/article/10.3389/fphys.2019.00824/full [cited 2020 3 Dec]

  • 73.

    Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: A prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42:949–58 Available from: https://pubmed.ncbi.nlm.nih.gov/24567250/ [cited 2020 8 Nov].

    PubMed 
    Article 

    Google Scholar
     

  • 74.

    Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311. https://doi.org/10.1210/jc.2002-020369.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J. Sports Sci. 2011.

  • 76.

    Melin A, Tornberg ÅB, Skouby S, Faber J, Ritz C, Sjödin A, et al. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48:540–5 Available from: https://pubmed.ncbi.nlm.nih.gov/24563388/ [cited 2020 8 Nov].

    PubMed 
    Article 

    Google Scholar
     

  • 77.

    Williams NI, Koltun KJ, Strock NCA, De Souza MJ. Female athlete triad and relative energy deficiency in sport: A focus on scientific rigor. Exerc Sport Sci Rev. 2019:197–205 Available from: https://pubmed.ncbi.nlm.nih.gov/31524785/ [cited 2020 8 Nov].

  • 78.

    Benson JE, Engelbert-Fenton KA, Eisenman PA. Nutritional aspects of amenorrhea in the female athlete triad. Int J Sport Nutr Exerc Metab. 1996;6(2):134–45. https://doi.org/10.1123/ijsn.6.2.134.

    CAS 
    Article 

    Google Scholar
     

  • 79.

    Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The Female Athlete Triad. Med Sci Sports Exerc. 1997;

  • 80.

    Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: Beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med; 2014; 48: 491–497. Available from: https://pubmed.ncbi.nlm.nih.gov/24620037/ [cited 2020 8 Nov]

  • 81.

    Henry CJK, Lightowler HJ, Marchini J. Intra-individual variation in resting metabolic rate during the menstrual cycle. Br J Nutr. 2003;89(6):811–7. https://doi.org/10.1079/BJN2003839.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Institute of Medicine. Dietary Reference Intakes For Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Natl Acad Press. 2002:335–432.

  • 83.

    Nutrition and Athletic Performance. Med Sci Sport Exerc [Internet]. Lippincott Williams and Wilkins; 2009 [cited 2020 Nov 16];41:709–31. Available from: http://journals.lww.com/00005768-200903000-00027

  • 84.

    Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(sup 1):S17–27. https://doi.org/10.1080/02640414.2011.585473.

    Article 
    PubMed 

    Google Scholar
     

  • 85.

    Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–8. https://doi.org/10.1080/0264041031000140536.

    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Wismann J, Willoughby D. Gender differences in Carbohydrate metabolism and Carbohydrate loading. J Int Soc Sports Nutr. 2006;3(1):28–34. https://doi.org/10.1186/1550-2783-3-1-28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Bergstrom J. Diet, Muscle Glycogen. Acta Physiol Scand. 1967:140–50.

  • 88.

    Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22(1):15–30. https://doi.org/10.1080/0264041031000140527.

    Article 
    PubMed 

    Google Scholar
     

  • 89.

    Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol. 1995;78(4):1360–8. https://doi.org/10.1152/jappl.1995.78.4.1360.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 90.

    James A, Lorraine M, Cullen D, Goodman C, Dawson B, Palmer N, et al. Muscle glycogen supercompensation: absence of a gender-related difference. Eur J Appl Physiol. 2001;85(6):533–8. https://doi.org/10.1007/s004210100499.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 91.

    Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol. 1985;59(2):429–33. https://doi.org/10.1152/jappl.1985.59.2.429.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 92.

    Sherman W, Brodowicz G, Wright D, Allen W, Simonsen J, Dernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21(5):598–604.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 93.

    Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8. https://doi.org/10.1152/jappl.1991.71.3.1082.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 94.

    Bailey SP, Zacher CM, Mittleman KD. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol. 2000;88(2):690–7. https://doi.org/10.1152/jappl.2000.88.2.690.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 95.

    Coyle EF. Fluid and fuel intake during exercise. J Sports Sci. 2004;22(1):39–55. https://doi.org/10.1080/0264041031000140545.

    Article 
    PubMed 

    Google Scholar
     

  • 96.

    Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: Nutrient timing. J Int Soc Sports Nutr. 2017;14:1–21.

    Article 
    CAS 

    Google Scholar
     

  • 97.

    Tarnopolsky MA, Bosman M, MacDonald JR, Vandeputte D, Martin J, Roy BD. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997;83(6):1877–83. https://doi.org/10.1152/jappl.1997.83.6.1877.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 98.

    Ivy JL. Glycogen Resynthesis After Exercise: Effect of Carbohydrate Intake. Int J Sports Med [Internet]. 1998; 142–145. Available from: https://www.sportsci.org/encyc/drafts/Glycogen.doc

  • 99.

    Volek JS, Forsythe CE, Kraemer WJ. Nutritional aspects of women strength athletes. Br J Sports Med. 2006;40(9):742–8. https://doi.org/10.1136/bjsm.2004.016709.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: Research & recommendations. J Int Soc Sports Nutr. 2018:1–57.

  • 101.

    Simopoulos AP. The Mediterranean diets in health and disease. Am J Clin Nutr. 1991;54(4):771. https://doi.org/10.1093/ajcn/54.4.771.

    Article 

    Google Scholar
     

  • 102.

    Isacco L, Duch P, Boisseau N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sport Med. 2012:327–42.

  • 103.

    Ruby B, Robergs R. Gender differences in substrate utilization during exercise. Sport Med. 1994;17(6):393–410. https://doi.org/10.2165/00007256-199417060-00005.

    CAS 
    Article 

    Google Scholar
     

  • 104.

    Hackney AC, McCracken-Compton MA, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int J Sport Nutr. 1994;4(3):299–308. https://doi.org/10.1123/ijsn.4.3.299.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 105.

    Froberg K, Pedersen PK. Sex differences in endurance capacity and metabolic response to prolonged, heavy exercise. Eur J Appl Physiol. 1984;52(4):446–50. https://doi.org/10.1007/BF00943378.

    CAS 
    Article 

    Google Scholar
     

  • 106.

    Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol. 2001;280:898–907.


    Google Scholar
     

  • 107.

    Spriet LL, Gibala MJ. Nutritional strategies to influence adaptations to training. J Sports Sci. 2004;22(1):127–41. https://doi.org/10.1080/0264041031000140608.

    Article 
    PubMed 

    Google Scholar
     

  • 108.

    Enette Larson-Meyer D, Newcomer BR, Hunter GR. Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol. 2002;282:95–106.


    Google Scholar
     

  • 109.

    Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients; 2018 [Cited 2020 Apr 13]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29414855

  • 110.

    Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology. 2006:362–9.

  • 111.

    Wolfe RR, Miller SL. The recommended dietary allowance of protein: A misunderstood concept. JAMA. 2008:2891–3. https://doi.org/10.1001/jama.299.24.2891.

  • 112.

    Humayun MA, Elango R, Ball RO, Pencharz PB. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am J Clin Nutr. 2007;86:995–1002 Available from: https://pubmed.ncbi.nlm.nih.gov/17921376/ [cited 2020 9 Nov].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 113.

    Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52:376–84.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 114.

    Tarnopolsky M. Protein requirements for endurance athletes. Nutrition. 2004:662–8 Available from: https://pubmed.ncbi.nlm.nih.gov/15212749/ [cited 2020 16 Nov].

  • 115.

    Kriengsinyos W, Wykes LJ, Goonewardene LA, Ball RO, Pencharz PB. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol – Endocrinol Metab [Internet]. 2004 ; 287: E489–E496. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15308475 [cited 2020 15 Apr]

  • 116.

    Draper CF, Duisters K, Weger B, Chakrabarti A, Harms AC, Brennan L, et al. Menstrual cycle rhythmicity: metabolic patterns in healthy women. Sci Rep. 2018:8.

  • 117.

    Lamont LS, Lemon PWR, Bruot BC. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exerc. 1987;19(2):106–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 118.

    Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PW. Indicator Amino Acid–Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. J Nutr. 2017;147:850–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28179492 [cited 2020 24 Mar].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 119.

    Malowany JM, West DWD, Williamson E, Volterman KA, Abou Sawan S, Mazzulla M, et al. Protein to Maximize Whole-Body Anabolism in Resistance-trained Females after Exercise. Med Sci Sports Exerc. 2019;51:798–804 Available from: https://www.researchgate.net/publication/328692335 [cited 2020 24 Mar].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 120.

    Bosse JD, Dixon BM. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories. J Int Soc Sports Nutr; 2012 [cited 2020 Apr 13]. p. 42. Available from: https://jissn.biomedcentral.com/articles/10.1186/1550-2783-9-42

  • 121.

    Houltham SD, Rowlands DS. A snapshot of nitrogen balance in endurance-trained women. Appl Physiol Nutr Metab. 2014;39:219–25 Available from: https://www.nrcresearchpress.com/doi/10.1139/apnm-2013-0182 [cited 2020 13 Apr].

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 122.

    Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol; 2013; 591: 2319–2331. Available from: https://doi.wiley.com/10.1113/jphysiol.2012.244897 [cited 2020 13 Apr]

  • 123.

    Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol. 2001:281.

  • 124.

    Josse AR, Tang JE, Tarnopolsky MA, Phillips SM. Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc. 2010;42(6):1122–30. https://doi.org/10.1249/MSS.0b013e3181c854f6.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 125.

    Pihoker AA, Peterjohn AM, Trexler ET, Hirsch KR, Blue MNM, Anderson KC, et al. The effects of nutrient timing on training adaptations in resistance-trained females. J Sci Med Sport; 2019; 22: 472–477. Available from: https://pubmed.ncbi.nlm.nih.gov/30366741/ [cited 2020 16 Nov]

  • 126.

    Wingfield HL, Smith-Ryan AE, Melvin MN, Roelofs EJ, Trexler ET, Hackney AC, et al. The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial. Sport Med; 2015 ; 1: 11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27747847 [cited 2020 16 Nov]

  • 127.

    Carbone JW, McClung JP, Pasiakos SM. Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Adv Nutr. 2019. p. 70–79. Available from: https://doi.org/10.1093/advances/nmy087, 2019 [cited 2020 14 Apr]

  • 128.

    Krishnan S, Tryon R, Welch LC, Horn WF, Keim NL. Menstrual cycle hormones, food intake, and cravings. FASEB J [Internet]. John Wiley & Sons, Ltd; [cited 2020 Dec 3];30:418.6–418.6. Available from: https://faseb.onlinelibrary.wiley.com/doi/full/10.1096/fasebj.30.1_supplement.418.6

  • 129.

    Trexler ET, Smith-Ryan A, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. International society of sports nutrition position stand: Beta-Alanine. J Int Soc Sports Nutr ; 2015;12:1–14. Available from: https://doi.org/10.1186/s12970-015-0090-y 1

  • 130.

    Stegen S, Bex T, Vervaet C, Vanhee L, Achten E, Derave W. β-Alanine dose for maintaining moderately elevated muscle carnosine levels. Med Sci Sports Exerc. 2014;46:1426–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 131.

    Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. β-Alanine supplementation elevates intramuscular carnosine content and attenuates fatigue in men and women similarly but does not change muscle L-histidine content. Nutr Res. 2017;48:16–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 132.

    Varanoske AN, Hoffman JR, Church DD, Wang R, Baker KM, Dodd SJ, et al. Influence of skeletal muscle carnosine content on fatigue during repeated resistance exercise in recreationally active women. Nutrients. 2017;9:1–14.

    Article 
    CAS 

    Google Scholar
     

  • 133.

    Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids; 2019; 51: 49–60. Available from: https://doi.org/10.1007/s00726-018-2609-4, 2019.

  • 134.

    Smith-Ryan A, Fukuda DH, Stout JR, Kendall KL. High-velocity intermittent running: Effects of beta-alanine supplementation. J Strength Cond Res [Internet]. 2012; 26: 2798–2805. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22797003 [cited 2020 24 Apr]

  • 135.

    Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30(3):279–89. https://doi.org/10.1007/s00726-006-0299-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 136.

    MacPhee S, Weaver IN, Weaver DF. An evaluation of Interindividual responses to the orally administered neurotransmitter β -alanine. J Amino Acids Hindawi Limited. 2013;2013:1–5. https://doi.org/10.1155/2013/429847.

    CAS 
    Article 

    Google Scholar
     

  • 137.

    Keisler BD, Armsey TD. Caffeine as an ergogenic aid. Curr Sports Med Rep. 2006;5(4):215–9. https://doi.org/10.1097/01.CSMR.0000306510.57644.a7.

    Article 
    PubMed 

    Google Scholar
     

  • 138.

    Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021:1 Available from: https://creativecommons.org/licenses/by/4.0/.TheCreativeCommonsPublicDomainDedicationwaiver [cited 2021 5 Feb].

  • 139.

    Lane JD, Steege JF, Rupp SL, Kuhn CM. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol. 1992;43(5):543–6. https://doi.org/10.1007/BF02285099.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 140.

    Smith A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002:1243–55.

  • 141.

    Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003:1–30.

  • 142.

    Graham TE. Caffeine and exercise metabolism, endurance and performance. Sport Med. 2001;31(11):785–807. https://doi.org/10.2165/00007256-200131110-00002.

    CAS 
    Article 

    Google Scholar
     

  • 143.

    Goldstein ER, Jacobs PL, Whitehurst M, Penhollow T, Antonio J. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7:1–6.

    Article 
    CAS 

    Google Scholar
     

  • 144.

    Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83:367–74 Available from: https://pubmed.ncbi.nlm.nih.gov/1327657/ [cited 2021 3 Feb].

    CAS 
    Article 

    Google Scholar
     

  • 145.

    Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J Int Soc Sports Nutr. 2007:6 Available from: https://jissn.biomedcentral.com/articles/10.1186/1550-2783-4-6 [cited 2021 3 Feb].

  • 146.

    Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017:1–18 Available from: https://jissn.biomedcentral.com/articles/10.1186/s12970-017-0173-z [cited 2021 5 Feb].

  • 147.

    Ellery SJ, Walker DW, Dickinson H. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids. 2016;48(8):1807–17. https://doi.org/10.1007/s00726-016-2199-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 148.

    Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion. 2017;2(2):CNC34. https://doi.org/10.2217/cnc-2016-0016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:1–19.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 150.

    Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: An update. J Int Soc Sports Nutr; 2012;9:1. Available from: ???

  • 151.

    Tarnopolsky MA, MacLennan DP. Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int J Sport Nutr. 2000;10:452–63.

    CAS 

    Google Scholar
     

  • 152.

    Ayoama R, Hiruma E, Sasaki H. Effects of creatine loading on muscular strength and endurance of female softball players. J Sports Med Phys Fitness. 2003;43(4):481–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: Research & recommendations. J Int Soc Sports Nutr. 2018;15:1–57.

    Article 
    CAS 

    Google Scholar
     

  • 154.

    Eckerson JM. Creatine as an Ergogenic Aid for Female Athletes. Strength Cond J. 2016;38:14–23 Available from: https://journals.lww.com/00126548-201604000-00004 [cited 2021 5 Feb].

    Article 

    Google Scholar
     

  • 155.

    Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495–505. https://doi.org/10.1080/07315724.2002.10719248.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 156.

    Hibbeln JR, Gow RV. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for Omega-3 and Omega-6 fatty Acids. Mil Med. 2014;179(11S):117–28. https://doi.org/10.7205/MILMED-D-14-00153.

    Article 
    PubMed 

    Google Scholar
     

  • 157.

    Swanson D, Block R, Mousa SA. Omega-3 fatty Acids EPA and DHA : health. J Adv Nutr. 2012;3:1–7. Available from: https://advances.nutrition.org/content/3/1/1.short. https://doi.org/10.3945/an.111.000893.

    CAS 
    Article 

    Google Scholar
     

  • 158.

    Vincent JU. Federal Register. Fed Regist. 2010;75:56928–35.


    Google Scholar
     

  • 159.

    West NP, Pyne DB, Peake JM, Cripps AW. Probiotics, immunity and exercise: a review. Exerc Immunol Rev. 2009;15:107–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, et al. International Society of Sports Nutrition Position Stand: probiotics. J Int Soc Sports Nutr. 2019:62 Available from: https://doi.org/10.1186/s12970-019-0329-0, 2019 [cited 2021 Feb 5].

  • 161.

    Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9:1–13.

    Article 
    CAS 

    Google Scholar
     

  • 162.

    Akgül T, Karakan T. The role of probiotics in women with recurrent urinary tract infections. Turkish J Urol; 2018. p. 377–383. Available from: /pmc/articles/PMC6134985/?report=abstract [cited 2020 14 Jul]

  • 163.

    Axling U, Önning G, Combs MA, Bogale A, Högström M, Svensson M. The Effect of Lactobacillus plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients. 2020;12:1279 Available from: https://www.mdpi.com/2072-6643/12/5/1279 [cited 2021 4 Mar].

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 164.

    West NP, Pyne DB, Cripps AW, Hopkins WG, Eskesen DC, Jairath A, et al. Lactobacillus fermentum (PCC) supplementation and gastrointestinal and respiratory-tract illness symptoms: A randomised control trial in athletes. Nutr J. 2011:10 Available from: https://pubmed.ncbi.nlm.nih.gov/21477383/ [cited 2021 4 Mar].

  • 165.

    Stecker RA, Moon JM, Russo TJ, Ratliff KM, Mumford PW, Jäger R, et al. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab. 2020;17:93 Available from: https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-020-00515-2 [cited 2021 4 Mar].

    CAS 
    Article 

    Google Scholar
     

  • 166.

    Kligler B, Cohrssen A. Probiotics Am Fam. Physician. American Academy of Family Physicians; 2008. p. 1073–8.

  • 167.

    Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, König D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. Br J Nutr. 2015;114(8):1237–45. https://doi.org/10.1017/S0007114515002810.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 168.

    Antonio J, Sanders MS, Ehler LA, Uelmen J, Raether JB, Stout JR. Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition. 2000;16(11-12):1043–6. https://doi.org/10.1016/S0899-9007(00)00434-2.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 169.

    Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:1–21.

    Article 
    CAS 

    Google Scholar
     

  • 170.

    Hoffman JR, Falvo MJ. Protein – Which is best? J Sport Sci Med. 2004;3:118–30.


    Google Scholar
     

  • 171.

    Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, et al. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids [Internet]. Springer-Verlag Wien; 2018 [cited 2020 Jul 14];50:1685–95. Available from: /pmc/articles/PMC6245118/?report=abstract.

  • 172.

    Jäger R, Zaragoza J, Purpura M, Iametti S, Marengo M, Tinsley GM, et al. Probiotic Administration Increases Amino Acid Absorption from Plant Protein: a Placebo-Controlled, Randomized, Double-Blind, Multicenter, Crossover Study. Probiotics Antimicrob Proteins [Internet]. Springer; 2020 [cited 2021 mar 4];12:1330–9. Available from: https://doi.org/10.1007/s12602-020-09656-5.

  • 173.

    Brown MA, Stevenson EJ, Howatson G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab. 2018;43(4):324–30. https://doi.org/10.1139/apnm-2017-0412.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 174.

    Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp. Mol. Med. Nature Publishing Group; 2017.

  • 175.

    Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Diet. Ref. Intakes Thiamin, Riboflavin, Niacin, Vitam. B6, Folate, Vitam. B12, Pantothenic Acid, Biot. Choline. National Academies Press; 1998.

  • 176.

    Riboflavin – Health Professional Fact Sheet [Internet]. [cited 2020 Jul 15]. Available from: https://ods.od.nih.gov/factsheets/Riboflavin-HealthProfessional/

  • 177.

    Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J Int Soc Sports Nutr. 2017;14:1–25.

    Article 
    CAS 

    Google Scholar
     

  • 178.

    Ross C, Taylor C, Yaktine A, Del Valle H. Dietary reference intakes for calcium and vitamin D. Diet Ref Intakes Calcium Vitam D 2011.

  • Most Popular

    Should You Get an Annual Physical Exam? | NutritionFacts.org

    What are the risks and benefits of getting a comprehensive annual physical exam and routine blood testing? The model of getting an annual physical exam...

    The Spiritual Meaning Of Shapes: A Glimpse Into Sacred Geometry + How To Use It

    Learn the spiritual meaning behind the shapes we see every day.

    Recent Comments